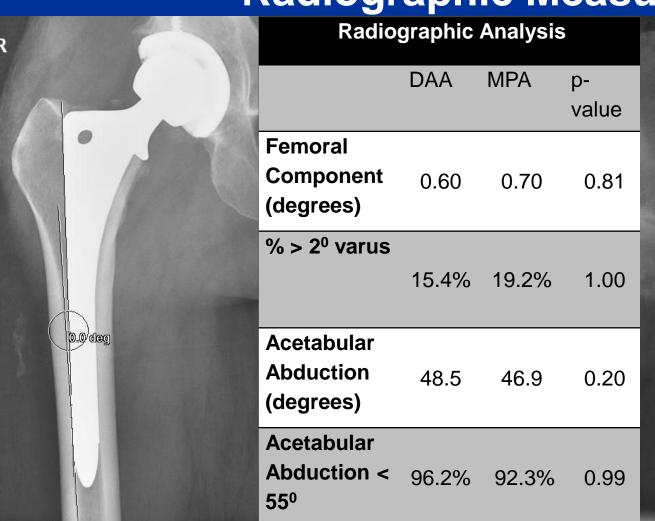
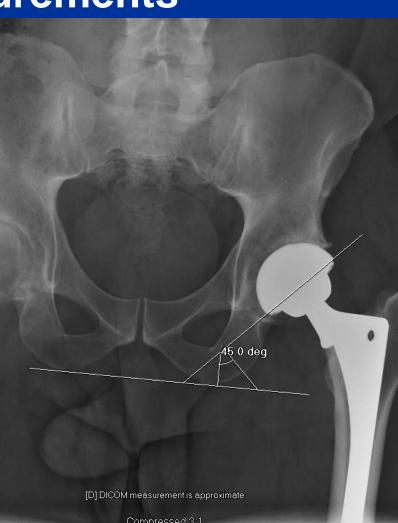


A Prospective Comparison of Inflammation and Muscle Damage Markers in MIS Direct Anterior Versus MIS Posterior Total Hip Arthroplasty

Patrick F Bergin MD¹; Jason D Doppelt MD¹; Curtis J Kephart MD¹; Michael T Benke MD¹; James H Graeter MD²; Andrew S Holmes MD¹; Hana H Smith BS³; Rocky S Tuan PhD^{3,4}; Anthony S Unger MD⁵

- 1. George Washington University, Department of Orthopaedic Surgery
- 2. Washington Circle Orthopaedic Associates National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health
- - University of Pittsburgh School of Medicine, Department of Orthopaedic Surgery
 - 5. Washington Orthopaedics and Sports Medicine

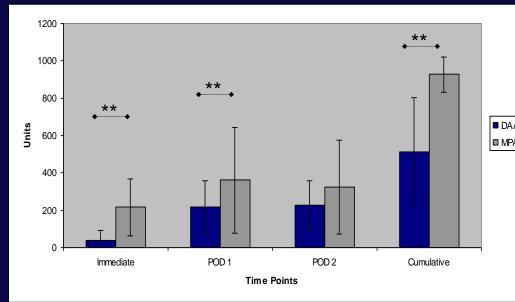

Purpose

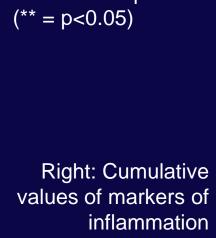

A number of surgical approaches are utilized in total hip arthroplasty (THA). The anterior approach has recently been hypothesized to result in less muscle damage. While clinical outcome studies are essential, they can be subject to patient and surgeon bias. Measuring biochemical markers of muscle damage and inflammation has been used to provide a more objective evidence of the surgical insult. We prospectively analyzed these differences in patients receiving anterior and posterior approach minimally-invasive THA to determine if there were any differences in muscle damage and inflammation.

Methods

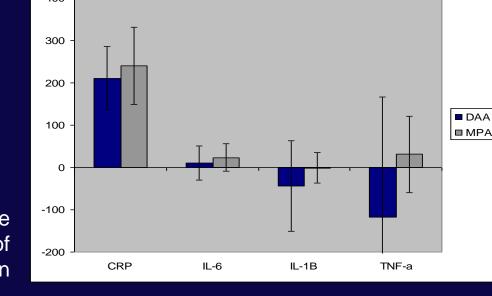
Fifty-seven consecutive patients were prospectively enrolled. Preoperative data was collected including age, gender, BMI, WOMAC and Harris Hip scores. At the time of surgery, the ASA classification, thigh circumferences, estimated blood loss, and incision length were also recorded. Creatine kinase (CK), Creactive protein (CRP), Interleukin-6 (IL-6), Interleukin-1beta (IL-1 β), and Tumor necrosis factor-alpha (TNF- α) were collected preoperatively, in the post anesthesia care unit, and on post-operative days 1 and 2. Transfusion requirements, decrease in hematocrit, and thigh swelling were also recorded. Cup abduction angle and stem alignment were measured on post-operative radiographs. Comparisons between the two groups were made using the Student's t-test and Fisher's Exact test.

Radiographic Measurements





Results


The two groups had similar demographics, admission lengths, transfusion requirements, and discharge dispositions. Markers of inflammation, CRP, IL-6, IL-1β, and TNF-α and were slightly decreased in direct anterior group. The rise in CK was 5.5 higher in the PACU and nearly twice as high cumulatively in the mini-posterior approach group (p<0.05). Component placement was similarly in both groups.

Muscle Damage and Inflammatory Markers																			
		ΔCK			∆CRP			∆IL-6			Δ IL-1β			Δ TNF-α					
	lmm	Pod 1	Pod 2	Cum	Pod 1	Pod 2	Cum	lmm	Pod 1	Pod 2	Cum	lmm	Pod 1	Pod 2	Cum	lmm	Pod 1	Pod 2	Cum
DAA	39	217	227	514	55	149	211	-1.9	7.5	6.8	10.9	-0.9	-40.7	-2.9	-43.5	-19.7	-20.1	-33.3	-117.5
MPA	216	361	325	927	61	172	241	3.5	8.7	10.5	23.6	-3.0	-3.4	-6.1	-0.9	8.7	9.5	4.7	31.1
p- value	0.00	0.02	0.12	0.00	0.56	0.24	0.24	0.12	0.82	0.36	0.18	0.65	0.01	0.75	0.06	0.31	0.24	0.27	0.05

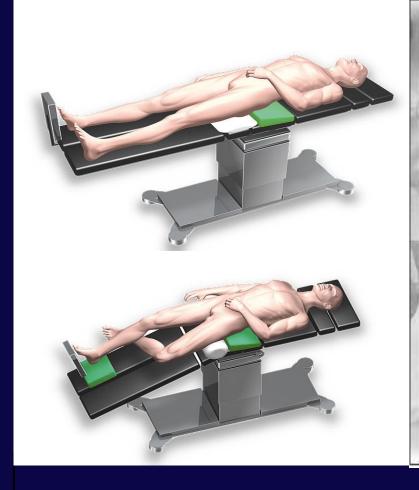
eft: CK values at

Patient Cohorts

	Pre-Op	perative Char	acteristics	Peri-Operative Factors						
		DAA (29 pts)	MPA (28 pts)	p-value			DAA	MPA	p-value	
Age (yrs)		68.8 +/- 9.1	65.1 +/- 11.3	0.20	Incision Length (cm)		12.1 +/-	15.4 +/-	0.00	
Gender (%	% male)	34.6% (9/26)	50.0% (13/26)	0.40	Operative Time (min)		78 +/-	118 +/-	0.00	
ВМІ		25.5 +/- 5.0	27.8 +/- 5.0	0.34	Estimated Bl (ml)	lood Loss	360 +/- 191	312 +/- 138	0.30	
ASA Grad	е	2.0 +/- 0.6	1.9 +/- 0.5	0.80	Transfusion	(units)	0.96 +/- 0.8	0.59 +/- 0.9	0.11	
Harris Hip		42.4 +/- 6.0	43.0 +/- 11.0	0.84	Hematocrit D	Orop (%)	9.7 +/- 4.6	8.5 +/- 2.8	0.33	
	Pain	12.4 +/- 2.0	11.2 +/- 4.3 0.32		Length of Hospitilization	on (days)	3.9 +/- 1.1	3.3 +/- 1.4	0.10	
WOMAC	Stiffness	5.5 +/- 1.1	4.5 +/- 1.9	0.07	Disposition (home)	(% to	65.4%	80.8%	0.35	
	Physical function	42.3 +/- 5.8	39.8 +/- 13.5	0.51	Post-Op Thigh Circ.	Troch.	64.1 +/- 6.2	66.2 +/- 9.8	0.48	
	Total	60.1 +/- 7.4	55.4 +/- 18.2	0.35	(cm)	Mid-thigh	53.0 +/- 4.7	54.1 +/- 8.6	0.66	
Pre-Op Thigh	Troch.	Troch. 56.1 +/- 5.6 60.0 +/- 10.1		0.17	Δ Thigh Circ. (cm)	Troch.	7.4 +/- 4.4	6.0 +/- 2.1	0.18	
Circ. (cm)	Mid-thigh	49.0 +/- 6.1	49.5 +/- 8.2	0.84		Mid-thigh	3.6 +/- 3.7	4.2 +/- 2.1	0.51	

Disclosure

We have not received anything of value from or own stock (or stock options) in a commercial company or institution related directly or indirectly to the subject of this presentation.


Discussion

Anterior THA using a muscle-sparing approach caused significantly less muscle damage compared to traditional posterior surgery as indicated by CK levels. The overall physiologic burden as measured by CRP, IL-6, IL-1 β , and TNF- α , however, appears to be similar. Objective measurement of muscle damage and inflammation provides an unbiased way of determining the immediate effects of surgical intervention in THA patients.


CONCLUSIONS

- •Direct anterior total hip arthroplasty causes significantly less muscle damage than MIS posterior THA.
- •However, there were no differences in markers of inflammation or overall invasiveness
- •Objective way to define "invasiveness" of procedures is needed

Direct Anterior Approach:

Top left: the patient is placed on a flat OR table and the lower extremity is draped free Bottom left: the bottom of the table is lowered 30° and the hip is extended, externally rotated and brought under the contralateral leg

Middle: Proper incision is vital and courses along the TFL

Top right: the femur is delivered into the wound and reamed and / or broached Bottom right: 30° external rotation and hip distraction is important for acetabular exposure